Package: BayesPPD 1.1.3

BayesPPD: Bayesian Power Prior Design

Bayesian power/type I error calculation and model fitting using the power prior and the normalized power prior for generalized linear models. Detailed examples of applying the package are available at <doi:10.32614/RJ-2023-016>. Models for time-to-event outcomes are implemented in the R package 'BayesPPDSurv'. The Bayesian clinical trial design methodology is described in Chen et al. (2011) <doi:10.1111/j.1541-0420.2011.01561.x>, and Psioda and Ibrahim (2019) <doi:10.1093/biostatistics/kxy009>. The normalized power prior is described in Duan et al. (2006) <doi:10.1002/env.752> and Ibrahim et al. (2015) <doi:10.1002/sim.6728>.

Authors:Yueqi Shen [aut, cre], Matthew A. Psioda [aut], Joseph G. Ibrahim [aut]

BayesPPD_1.1.3.tar.gz
BayesPPD_1.1.3.zip(r-4.5)BayesPPD_1.1.3.zip(r-4.4)BayesPPD_1.1.3.zip(r-4.3)
BayesPPD_1.1.3.tgz(r-4.4-x86_64)BayesPPD_1.1.3.tgz(r-4.4-arm64)BayesPPD_1.1.3.tgz(r-4.3-x86_64)BayesPPD_1.1.3.tgz(r-4.3-arm64)
BayesPPD_1.1.3.tar.gz(r-4.5-noble)BayesPPD_1.1.3.tar.gz(r-4.4-noble)
BayesPPD_1.1.3.tgz(r-4.4-emscripten)BayesPPD_1.1.3.tgz(r-4.3-emscripten)
BayesPPD.pdf |BayesPPD.html
BayesPPD/json (API)
NEWS

# Install 'BayesPPD' in R:
install.packages('BayesPPD', repos = c('https://angieshen6.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:
  • actg019 - AIDS Clinical Trial ACTG019 (1990).
  • actg036 - AIDS Clinical Trial ACTG036 (1991).

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblascppopenmp

2.48 score 1 packages 7 scripts 344 downloads 9 exports 4 dependencies

Last updated 1 days agofrom:a105b5c74c. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 14 2025
R-4.5-win-x86_64OKJan 14 2025
R-4.5-linux-x86_64OKJan 14 2025
R-4.4-win-x86_64OKJan 14 2025
R-4.4-mac-x86_64OKJan 14 2025
R-4.4-mac-aarch64OKJan 14 2025
R-4.3-win-x86_64OKJan 14 2025
R-4.3-mac-x86_64OKJan 14 2025
R-4.3-mac-aarch64OKJan 14 2025

Exports:glm.fixed.a0glm.random.a0normalizing.constantpower.glm.fixed.a0power.glm.random.a0power.two.grp.fixed.a0power.two.grp.random.a0two.grp.fixed.a0two.grp.random.a0

Dependencies:RcppRcppArmadilloRcppEigenRcppNumerical

Bayesian Sample Size Determination for Two Group Models (Binary and Normal Outcomes)

Rendered frombayesppd-vignette.Rmdusingknitr::rmarkdownon Jan 14 2025.

Last update: 2022-11-12
Started: 2022-11-12